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Lie-Backlund Symmetries of Two-Dimensional
SU(2) Yang—Mills System and Nonhomogeneous
Lax Pair
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We obtain the Lie—Backlund-type symmetries of the two-dimensional SU(2)
Yang—Mills equation with the help of a generalized formal series method. Both
(%, t)-dependent and independent symmetries are obtained and it is shown that
they form a closed algebra. Finally a nonhomogeneous Lax equation is derived
using these symmetries.

1. INTRODUCTION

Integrable nonlinear systems have many interesting and special proper-
ties which are not shared by general class of partial differential equations.®
One of them is the existence of an infinite number of conserved quantities
and symmetries.®>® An important nonlinear equation which occurs in model
guantum chromodynamics is the equation governing the SU(2) Yang—Mills
theory in two dimension. The existence of a Lax pair for the system was
proved by Ahmad and Roy Chowdhury® through the prolongation theory,
which isanimportant step in proving the complete integrability of the system.
Here we derive the general class of Lie—Backlund-type symmetries by adopt-
ing a generalized formal series approach advocated by Lou.®

In the last part we show how these symmetries can be effectively used
to generate an alternative nonhomogeneous Lax equation for the system.

2. FORMULATION
The set at equations under consideration can be written as
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AL, + Al — AZAS + A2A3 = 0
A2, + A2 — ASAL + AAL =0
A, + A — ALAZ + AIAZ = 0 (1)

where A' (i = 1, 2, 3) are the SU(2) isocomponents of the gauge field. To
set up a compact notation we rewrite the above set as

A+ KA A, ..)=0 )
withi =1, 2, 3and
KO = Al — A2 A3 + AZA3,
K@ = A2 — A3 AL + ASAL A3)
K@ = A3 — AL A2 + AIAZ
The symmetry transformation for A' can be written as
A S A+ eof 4

so that the linearized equation is written as
9 A+ e0l)odleco + L KI(A + €07, .. Yoo = O
0€ 0€

Written in full it reads
a?| +K'[a?|=0 5)
3

where

K2 §K2 3K?2
AL oAZ oA3 (®)
8K® B®K® BK®
SAl  8A? BA3

where
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@:2—-& (7)

with A = 9'Al/ox.
In the generalized series approach we set

ol -
o= (02) = > f(Ng[K] (8)
0.3 K=0
with fCU(t) = a7 (1), fCA(t) = 9.2, ete., f(t) being an arbitrary function of
t. Substituting (8) in eguation (5), we get
SR DG [K — 1] + F kg [K — 1] + fCK DK 'g[K — 1} =0 (9)
K

Equating coefficients of f(-K1, we get
oMK — 1] + o™K] + K'o[K — 1] = 0
or
o[K] = (=9 — 09K ")o[K — 1] (10)

yielding a recursion relation for o[K].

For K = 0 one gets
YAl
<a§x[0]) =0 (11)

o3 0]

A simple implication of this equation is o[0] = x h(t) or ¢ = H(t), where
h and H are three-component vectors and a function of t only.
For o = H(t) we get

_ at _ A3 AZ
o[l = A*  —a —A'[H®) (12)
_A2 Al _at
Plugging this in the recursion relation (10), we get
Bt 2A3 _2A2
o2 = —2~° 4 2A" aH(®) (13)
22 —2At I

Proceeding in the same fashion, we get
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a KA  —KA?
o[K] = (-1 —KA® 5, KAL |ak-1H(t) (14)
KA2  —KA! g,

= (="M o H®Y

so that
o =3 (—DK o Of (Mg oK H(1) (15)
K
Let us consider some special situations for different choices of H(t).
For
a
Ht) =B |-t (a B, ) constant

Y

so that

fot — FOD (a+ AL — A2yt) + 262 (A8 — A%y)
o, =| Bt = fCD (B + Ayt — Alat) + 22 (Aly — A%a) | (16)
fyt — fCU (v + A2 at — ABt) + 2f(2 (A2a — AlB)

it may be verified that o, is a solution of the linearized equation (5). In the

second case
¢4
H(t) = B) 2
y

fat? — fCD(2at + AR — A%yt?)
+ 2fCD(o + 2A%Bt — 2A2yt) — 2f-I(3A%B — 3A%y)
B2 — fCD(2Bt + Aly2 — A%at?)
T2= | 4 2f AR + 2Alyt — 2A3%t) — 2fI(3Aly — 3A%) (17)
fyt2 — (24t + A2t — AIRED)
+ 2fC2(y + 2%t — 2A1BY) — 2f-I(3A%: — 3AIB)

which ultimately yields

On the other hand, the genera form can be written as
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o[0] = (B) U (18)
Y

Lha — Kn(ASB - AZ'Y)
op = | LB — K (Aly — Ala) (19
Lyy — Kn(A%a — A'B)

with

L) = 3 (~1HOD aj(rr)
=0

n

Kn() = X (=DI(j+D)f 0+ - a{(t") (20)

i=0

On the other hand, due to trandational symmetry of the equation in space
and time, two symmetries are

A A
91 = A)Z( = Axy 92 = ATZ = At (21)
A A
We now compute the Jacobi bracket® of the two symmetries oy, 6;, as
{01, 8} = 2(a)[6]] — =2(6)[oi] (22)

where = (o)) stands for

dat dof dot
3A, A, DA
do? d0% do?
5(0) = | 5A, 3A, dA,
daf dof dof
A, BA; DA

(23)

Then one can easily evaluate and obtain

aly — (Asﬁ - AZY)Ll
{A, o1} = | BLy — (Ay — Aa)L,
YLy — (AZOL - AlB)Ll

=vy (sy) (24)
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It is now easy to demonstrate that v,, is a solution of the linearized equation
(5). We now define a set of such symmetries as

alym — (ASB - Az’Y)Ln,(mfl)t
Vnm-1 = | Blam — (Aly — Asa)l—n,(mfl)t (25)
'yLn,th - (Aza - AlB)Ln,(m—l)t

where L, ,; denotes the mth derivative of L, with respect to time, that is,
dML,/o;m. It is then an immediate consequence that

{At ) Vn,m} = Vn(m+1) (26)
So they are generated recursively. On the other hand, one can also deduce that
{om o} =0 (27)

So they commute with respect to Jacobi bracket.
Lastly we may add a few comments for the situation when

(p(t))
o[0] = xh(®)  with h() = [ q(t)
r(t)

From equation (10) we can at once evaluate

2
o'[1] = (—xp — xA%q + xA%r) + 2<_XZ p+ qoxt A3 — raxlAz)
2
o?[1] = (—xq + xA%p + xA'r) + 2<—qxz + rog At — an1A3> (29)

2
o3[1] = (—xr, — xAlq — xA%p) + 2<—r XZ + poy tAZ — an1A1>

The expressions for ¢'[2] and other o'[K] become highly complicated
and are not reproduced here, but the series in equation (8) is not truncated.

3. NONHOMOGENEOUS LAX PAIR

Let us now refer to ref. 4, where a Lax pair was obtained for equation
(1) via a prolongation technique. Such a pair can be written as

Y, = Fy; Y = Gy (30)

Y is a three-component vector and
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0 A A 0o A -A
F=[ A 0o -A oc=(-A o0 A
-A2 AL 0 A2 A 0

This set can aso be written as
L.Y =0, LY=0 with L, =9, — F, L,=9,—G (3D

and the nonlinear system is equivalent to [L,, L,] = 0. In the following our
motivation is to search for a Lax pair of the form

LY =fY,  LyY=gY (32)

Thus, that the consistency L,L,Y = L,L,Y again leads to the nonlinear equa-
tion, which implies that

(Lig — Lf)Y=0 (33

Let us now choose f = oy, Where o] stands for a Lie—-Backlund symmetry
of equation (1) satisfying

Ohoa + 0% — Ajo? — Aloby + Ado? + A%eiy =0
O + 05 — Aol — Alady + Ako? + Aol = 0 (34)
b T 05 — ALo? — Aloly + Aot + Alod, =0

Then equation (33) can be written as

Oy + gFy — Fgy — Giiey — 0ixGY + Goiy = 0 (35)
Let us assume g be of general from (g; ),
Ouu Q12 i3
g=(92 0Ox 0 (36)
Os1 U2 UOss
whence from equation (35) we obtain
A 0 Ax AL\ (A
Bl=|-Ay, 0 AX|-[(B (37)
C y -AZ —-A; O C

where A = g5 — Oo1, B = 013 — 031, C = o3 — gso. If we choose the trivia
solution A = B = C = 0, then we get

R+ MR=T (38)

where R = (Qu1, G20 U033, O12s O13, 29), T={Ti},i =1,...,6,andMisa
6 X 6 matrix. Their explicit forms are as follows,



1108 Das and Roy Chowdhury

T, = —ok + Ao + Alod, — Ado? — Aoy

T, = —05 + Alot + Alod, — ALo? — Aoty

Ty = —o3 + Ako? + Aol — Adol — Alody (39)
Ty = (Uilxx - (Ti2xx) A3

T, = (o — o) A°

Te = (U%(x - (Ti3x><) Al

and
0o 0 0 28, -2A2 O
0o 0 0 -288, 0  2AL
0o 0 0 0 22 -2AL
M=1_a A 0 0 AL —A2 (40)
A% 0 -AZ,  —AL 0 AL
0 -A,L, AL, AL -A% O

Equation (38) is a linear equation and can be explicitly solved. So we have
shown that one can obtain (f, g) explicitly in terms of the field variables and
hence a nonhomogeneous Lax pair can be realized.
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