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Lie–Bäcklund Symmetries of Two-Dimensional
SU(2) Yang–Mills System and Nonhomogeneous
Lax Pair

Chandan Kr. Das1 and A. Roy Chowdhury1
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We obtain the Lie–Bäcklund-type symmetries of the two-dimensional SU(2)
Yang–Mills equation with the help of a generalized formal series method. Both
(x, t)-dependent and independent symmetries are obtained and it is shown that
they form a closed algebra. Finally a nonhomogeneous Lax equation is derived
using these symmetries.

1. INTRODUCTION

Integrable nonlinear systems have many interesting and special proper-
ties which are not shared by general class of partial differential equations.(1)

One of them is the existence of an infinite number of conserved quantities
and symmetries.(2,3) An important nonlinear equation which occurs in model
quantum chromodynamics is the equation governing the SU(2) Yang–Mills
theory in two dimension. The existence of a Lax pair for the system was
proved by Ahmad and Roy Chowdhury(4) through the prolongation theory,
which is an important step in proving the complete integrability of the system.
Here we derive the general class of Lie–Bäcklund-type symmetries by adopt-
ing a generalized formal series approach advocated by Lou.(5)

In the last part we show how these symmetries can be effectively used
to generate an alternative nonhomogeneous Lax equation for the system.

2. FORMULATION

The set at equations under consideration can be written as
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A1
xxt 1 A1

x 2 A2
xx A3 1 A2A3

xx 5 0

A2
xxt 1 A2

x 2 A3
xx A1 1 A3A1

xx 5 0

A3
xxt 1 A3

x 2 A1
xx A2 1 A1A2

xx 5 0 (1)

where Ai (i 5 1, 2, 3) are the SU(2) isocomponents of the gauge field. To
set up a compact notation we rewrite the above set as

Ai
xxt 1 Ki (Ai, Ai

x, . . .) 5 0 (2)

with i 5 1, 2, 3 and

K(1) 5 A1
x 2 A2

xx A3 1 A2A3
xx

K(2) 5 A2
x 2 A3

xx A1 1 A3A1
xx (3)

K(3) 5 A3
x 2 A1

xx A2 1 A1A2
xx

The symmetry transformation for Ai can be written as

Ai → Ai 1 esi (4)

so that the linearized equation is written as

­

­ε
(Ai 1 εsi)xxt.ε50 1

­

­ε
Ki (Ai 1 εsi, . . .).ε50 5 0

Written in full it reads

1
s1

s2

s32
xxt

1 K 81
s1

s2

s32 5 0 (5)

where

K8 5 1
dK1

dA1

dK1

dA2

dK1

dA3

dK2

dA1

dK2

dA2

dK2

dA3

dK3

dA1

dK3

dA2

dK3

dA32 (6)

where
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dKi

dAj 5 o
l50

dKi

dAi
l

­l (7)

with Ai
l 5 ­lAi/­xl.

In the generalized series approach we set

s 5 1
s1

s2

s32 5 o
`

K50
f (2k)s[K ] (8)

with f (21)(t) 5 ­21
t f(t), f (22)(t) 5 ­22

t , etc., f (t) being an arbitrary function of
t. Substituting (8) in equation (5), we get

o
K

{ f (2k11)sxxt[K 2 1] 1 f (2k12)sxx[K 2 1] 1 f (2K11)K8s[K 2 1]} 5 0 (9)

Equating coefficients of f (2K11), we get

sixt[K 2 1] 1 six[K ] 1 K 8s[K 2 1] 5 0

or

s[K ] 5 (2­t 2 ­22
x K 8)s[K 2 1] (10)

yielding a recursion relation for s[K ].
For K 5 0 one gets

1
s1

xx[0]
s2

xx[0]
s3

xx[0]2 5 0 (11)

A simple implication of this equation is s[0] 5 x h(t) or s 5 H(t), where
h and H are three-component vectors and a function of t only.

For s 5 H(t) we get

s[1] 5 1
2­t 2A3 A2

A3 2­t 2A1

2A2 A1 2­t
2H(t) (12)

Plugging this in the recursion relation (10), we get

s[2] 5 1
­t 2A3 22A2

22A3 ­t 2A1

2A2 22A1 ­t
2­tH(t) (13)

Proceeding in the same fashion, we get
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s[K ] 5 (21)K1
­t KA3 2KA2

2KA3 ­t KA1

KA2 2KA1 ­t
2­K21

t H(t) (14)

5 (21)KMK ­K21
t H(t)

so that

s 5 (
K

(21)K ­(2K)
t f (t)MK ­K21

t H(t) (15)

Let us consider some special situations for different choices of H(t).
For

H(t) 5 1
a
b
g2 ? t, (a, b, g) constant

so that

s1 5 1
fat 2 f (21) (a1A3bt 2 A2gt) 1 2f (22) (A3b 2 A2g)

fbt 2 f (21) (b 1 A1gt 2 A3at) 1 2f (22) (A1g 2 A3a)
fgt 2 f (21) (g 1 A2 at 2 A1bt) 1 2f (22) (A2a 2 A1b)2 (16)

it may be verified that s1 is a solution of the linearized equation (5). In the
second case

H(t) 5 1
a
b
g2 ? t2

which ultimately yields

s2 51
fat2 2 f (21)(2at 1 A3bt2 2 A2gt2)

1 2f (22)(a 1 2A3bt 2 2A2gt) 2 2f (23)(3A3b 2 3A2g)
fbt2 2 f (21)(2bt 1 A1gt2 2 A3at2)

1 2f (22)(b 1 2A1gt 2 2A3at) 2 2f (23)(3A1g 2 3A3a)
fgt2 2 f (21)(2gt 1 A2at2 2 A1bt2)

1 2f (22)(g 1 2A2at 2 2A1bt) 2 2f (23)(3A2a 2 3A1b)2 (17)

On the other hand, the general form can be written as
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s[0] 5 1
a
b
g2 ? tn (18)

sn 5 1
Lna 2 Kn(A3b 2 A2g)
Lnb 2 Kn(A1g 2 A3a)
Lng 2 Kn(A2a 2 A1b)2 (19)

with

Ln(t) 5 o
n

j50
(21) jf (2j) ­ j

t(tn)

Kn(t) 5 o
n

j50
(21) j( j11) f 2( j11) ? ­ j

t(tn) (20)

On the other hand, due to translational symmetry of the equation in space
and time, two symmetries are

u1 5 1
A1

x

A2
x

A3
x
2 5 Ax , u2 5 1

A1
t

A2
t

A3
t
2 5 At (21)

We now compute the Jacobi bracket(6) of the two symmetries si , uj , as

{si , uj} 5 {(si)[uj] 2 {(uj)[si] (22)

where {(si) stands for

{(si) 5 1
ds1

i

dA1

ds1
i

dA2

ds1
i

dA3

ds2
i

dA1

ds2
1

dA2

ds2
i

dA3

ds3
i

dA1

ds3
i

dA2

ds3
i

dA3

2 (23)

Then one can easily evaluate and obtain

{At , s1} 5 1
aL1t 2 (A3b 2 A2g)L1

bL1t 2 (A1g 2 A3a)L1

gL1t 2 (A2a 2 A1b)L1
2

5 n11 (say) (24)



1106 Das and Roy Chowdhury

It is now easy to demonstrate that n11 is a solution of the linearized equation
(5). We now define a set of such symmetries as

nn,(m21) 5 1
aLn,mt 2 (A3b 2 A2g)Ln,(m21)t

bLn,mt 2 (A1g 2 A3a)Ln,(m21)t

gLn,mt 2 (A2a 2 A1b)Ln,(m21)t
2 (25)

where Ln,mt denotes the mth derivative of Ln with respect to time, that is,
­mLn /­tm. It is then an immediate consequence that

{At , nn,m} 5 nn,(m11) (26)

So they are generated recursively. On the other hand, one can also deduce that

{sm , sn} 5 0 (27)

So they commute with respect to Jacobi bracket.
Lastly we may add a few comments for the situation when

s[0] 5 xh(t) with h(t) 5 1
p(t)
q(t)
r(t)2

From equation (10) we can at once evaluate

s1[1] 5 (2xpt 2 xA3q 1 xA2r) 1 212
x2

4
p 1 q­21

x A3 2 r­21
x A22

s2[1] 5 (2xqt 1 xA3p 1 xA1r) 1 212q
x2

4
1 r­21

x A1 2 p­21
x A32 (29)

s3[1] 5 (2xrt 2 xA1q 2 xA2p) 1 212r
x2

4
1 p­21

x A2 2 q­21
x A12

The expressions for si[2] and other si[K ] become highly complicated
and are not reproduced here, but the series in equation (8) is not truncated.

3. NONHOMOGENEOUS LAX PAIR

Let us now refer to ref. 4, where a Lax pair was obtained for equation
(1) via a prolongation technique. Such a pair can be written as

Yn 5 Fy; Yt 5 Gy (30)

Y is a three-component vector and
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F 5 1
0 2A3

xx A2
xx

A3
xx 0 2A1

xx

2A2
xx A1

xx 0 2; G 5 1
0 A3 2A2

2A3 0 A1

A2 2A1 0 2
This set can also be written as

L1Y 5 0, L2Y 5 0 with L1 5 ­x 2 F, L2 5 ­t 2 G (31)

and the nonlinear system is equivalent to [L1, L2] 5 0. In the following our
motivation is to search for a Lax pair of the form

L1Y 5 f Y, L2Y 5 gY (32)

Thus, that the consistency L1L2Y 5 L2L1Y again leads to the nonlinear equa-
tion, which implies that

(L1g 2 L2 f )Y 5 0 (33)

Let us now choose f 5 s8ixx, where s8i stands for a Lie–Bäcklund symmetry
of equation (1) satisfying

s1
ixxt 1 s1

ix 2 A2
xxs3

i 2 A3s2
ixx 1 A3

xxs2
i 1 A2s3

ixy 5 0

s2
ixxt 1 s2

ix 2 A3
xxs1

i 2 A1s3
ixx 1 A1

xxs3
i 1 A3s1

ixx 5 0 (34)

s3
ixxt 1 s3

ix 2 A1
xxs2

i 2 A2s1
ixx 1 A2

xxs1
i 1 A1s2

ixx 5 0

Then equation (33) can be written as

gxy 1 gFy 2 Fgy 2 siixxt y 2 sixxGY 1 Gsixx y 5 0 (35)

Let us assume g be of general from (gij ),

g 5 1
g11 g12 g13

g21 g22 g23

g31 g32 g33
2 (36)

whence from equation (35) we obtain

1
A
B
C2

x

5 1
0 A1

xx A2
xx

2A1
xx 0 A3

xx

2A2
xx 2A3

xx 0 2 ? 1
A
B
C2 (37)

where A 5 g12 2 g21, B 5 g13 2 g31, C 5 g23 2 g32. If we choose the trivial
solution A 5 B 5 C 5 0, then we get

Rx 1 MR 5 T (38)

where R 5 (g11, g22, g33, g12, g13, g23)t, T 5 {Ti}, i 5 1, . . . , 6, and M is a
6 3 6 matrix. Their explicit forms are as follows,
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T1 5 2s1
ix 1 A2

xxs3
i 1 A3s2

ixx 2 A3
xxs2

i 2 A2s3
ixx

T2 5 2s2
ix 1 A3

xxs1
i 1 A1s3

ixx 2 A1
xxs3

i 2 A3s1
ixx

T3 5 2s3
ix 1 A1

xxs2
i 1 A2s1

ixx 2 A2
xxs1

i 2 A1s2
ixx (39)

T4 5 (s1
ixx 2 s2

ixx) A3

T5 5 (s3
ixx 2 s1

ixx) A2

T6 5 (s2
ixx 2 s3

ixx) A1

and

M 5 1
0 0 0 2A3

xx 22A2
xx 0

0 0 0 22A3
xx 0 2A1

xx

0 0 0 0 2A2
xx 22A1

xx

2A3
xx A3

xx 0 0 A1
xx 2A2

xx

A2
xx 0 2A2

xx 2A1
xx 0 A3

xx

0 2A1
xx A1

xx A2
xx 2A3

xx 0 2 (40)

Equation (38) is a linear equation and can be explicitly solved. So we have
shown that one can obtain ( f, g) explicitly in terms of the field variables and
hence a nonhomogeneous Lax pair can be realized.
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